Idea
Let $G$ be a complex reductive group with maximal torus $T\subset G$.
- Let $\Lambda$ and $\Lambda^\vee$ be the lattices of characters and 1-parameter subgroups of $T$,
- There are inclusions $\Lambda \subset \mathfrak{t}^\ast$ and $\Lambda^\vee\subset \mathfrak{t}$.
- Write the set of roots and coroots as $\Delta \subset \Lambda$ and $\Delta^\vee\subset \Lambda^\vee$.
The root and coroot data can be written as $$ (\Delta\subset\Lambda \subset \mathfrak{t}^\ast, \Delta^\vee\subset\Lambda^\vee\subset \mathfrak{t}). $$
Given $G’$ another complex reductive group with maximal torus $T$ with root-coroot data $$ (\Delta’\subset\Lambda’ \subset \mathfrak{t}’^\ast, \Delta’^\vee\subset\Lambda’^\vee\subset \mathfrak{t}’), $$ assume that there is an isomorphism $\phi:\mathfrak{t}\to \mathfrak{t}’^\ast$ interchanging the root and coroot data, viz. identifying $\Lambda$ with $\Lambda’^\vee$ and $\Delta$ with $\Delta’^\vee$, and that isomorphism $\mathfrak{t}’\to \mathfrak{t}^\ast$ induced by $\phi$ identifies $\Delta’$ with $\Delta^\vee$ and $\Lambda’$ with $\Lambda^\vee$.
Then $G’$ is the Langlands dual group of $G$, denoted by ${}^L G$. Note that ${}^L(^L G) = G$.
Now let $X$ be a smoth projective curve over $\mathbb{C}$ with genus $g \gt 1$ and let $\text{Bun}_G$ be the moduli stack of principal $G$-bundles.
Using perverse sheaves the field $\mathbb{C}$ can be replaced by $\mathbb{F}_q$.